Human Computer Interaction

6. Smart and suggestive interfaces (A)

National Chiao Tung Univ, Taiwan
By: I-Chen Lin, Assistant Professor
Introduction

- How to manipulate complex structures (e.g. in a higher dimension) with simpler interface devices?

- How to beautify (correct) noise-prone interaction?

- How to simultaneously improve the efficiency, learnability, etc.?
Introduction (cont.)

- Difficult to deal with all aspects in a general-purpose interface.

- Let’s focus on special-purpose systems.
 - Manipulation of complex structures
 - With prior knowledge or constraints
 - Beautification
 - Automatic or suggestive
 - Don’t forget “undo” and “confirm”
 - Usability improvement
 - Embedding utility tools into interfaces
 - Immediate feedback
The concepts of prediction, suggestion, and confirmation have been already popularly used.
Smart or suggestive interfaces
Smart or suggestive interfaces...

Suggestive tools (MS Visual C++ 6.0)
Smart or suggestive interfaces

- Techniques behind the concepts
 - Intelligent agents
 - Empirical rules
 - Learning tech.
 -

- How to apply these simple concepts to other applications?
E.g. Sketching System

- A better UI for this ...
 - Automatic line correction?
 - Symmetric properties?
 - Perpendicularity?
 -
Pegasus: 2D Geometric Drawing System

- Beautify the freestrokes by geometric constraints.
 - Inferring underlining geometric constraints

- Generating multiple candidates to solve ambiguity.

- Evaluating the most plausible candidate.

Supported relations

a) Connection (to a vertex)

b) Connection (to a segment)

c) Parallelism

d) Perpendicularity

e) Alignment

f) Congruence

g) Symmetry (Horizontal)

h) Interval Equality
Drawing Examples

- Connection
 - Symmetry
 - (Flipped Congruence)
- Connection
 - Horizontal Alignment
- Connection
 - Congruence
- Connection
 - Vertical Alignment

a) Multiple candidates are generated.

b) Multiple Possibilities

c) Confirm (tapping outside).

d)

e) Select a candidate by tapping.

f) Confirm.

- **Existing Segments**
- Primal or Currently Selected Candidate
- Multiple Candidates
- Geometric Constraints Satisfied by the Candidate
Pegasus: 2D Geometric Drawing System
Pegasus: 2D Geometric Drawing System

- Interactive beautification and predictive drawing for rapid prototyping.

- Limitation & future work in this system
 - Selection among a large number of candidates
 - Selecting reference segments
 - Curves, patterns, etc.
 - 3D objects
3D Geometric Drawing System

- How to extend the concepts in the previous system?
 - Connection
 - Parallelism
 - Perpendicularity
 - Symmetric properties
 - Interval equality
 -

- Manipulating 3D objects with 2D devices
 - Active or constraint planes
3D Geometric Drawing System

- A suggestive interface
 - Hints according to geometric constraints
 - Patterns

3D Geometric Drawing System

a) draw a line on the ground b) choose a temporary drawing plane

c) draw a line on the drawing plane d) choose a rectangle

c) unhighlight lines f) draw a line on the ground

g) highlight a line h) choose a rectangle

a) original scene b) highlight the second line c) click a candidate and prediction occurs d) original scene e) highlight a line and prediction occurs f) click a candidate and the next prediction occurs
3D Geometric Drawing System
3D Geometric Drawing System

- For rapid prototyping.
- Cons and pros of suggestions and predictions.
- Learnability: more complex than the 2D case.
- Considering other special-purpose interfaces.