
I.-C. Lin, Assistant Professor. Textbook: Operating System
Concepts 8ed

CHAPTER 4:
MULTITHREADED PROGRAMMING

Chapter 4: Multithreaded ProgrammingChapter 4: Multithreaded Programming

Overview

Multithreading Models

Thread Libraries

Threading Issues

Operating-System Examples

Single and Multithreaded ProcessesSingle and Multithreaded Processes

B fitBenefits

Responsiveness

R Sh iResource Sharing

EEconomy

Utilization of MP ArchitecturesUtilization of MP Architectures

Multithreaded Server Architecture

Concurrent Execution on a Single-core System

Parallel Execution on a Multicore System

User ThreadsUser Threads

Th d d b l l h d libThread management done by user-level threads library

Th i th d lib iThree primary thread libraries:
POSIX Pthreads

Win32 threadsWin32 threads

Java threads

Kernel ThreadsKernel Threads

S t d b th K lSupported by the Kernel

ExamplesExamples
Windows XP/2000

SolarisSolaris

Linux

Tru64 UNIX

Mac OS X

Multithreading ModelsMultithreading Models

M t OMany-to-One

One to OneOne-to-One

Many-to-ManyMany-to-Many

Many-to-OneMany to One

Many user level threads mapped to single kernel threadMany user-level threads mapped to single kernel thread

E lExamples:
Solaris Green Threads

GNU Portable ThreadsGNU Portable Threads

Many-to-One ModelMany to One Model

One-to-OneOne to One

E h l l th d t k l th dEach user-level thread maps to kernel thread

E lExamples
Windows NT/XP/2000

LinuxLinux

Solaris 9 and later

One-to-one ModelOne to one Model

Many-to-Many ModelMany to Many Model

Allows many user level threads to be mapped to many Allows many user level threads to be mapped to many
kernel threads

Allows the operating system to create a sufficient number
of kernel threadsof kernel threads

Solaris prior to version 9Solaris prior to version 9

Wi d NT/2000 ith th Th dFib kWindows NT/2000 with the ThreadFiber package

Many-to-Many ModelMany to Many Model

Two-level ModelTwo level Model

Similar to M:M except that it allows a user thread to be Similar to M:M, except that it allows a user thread to be
bound to kernel thread

Examples
IRIXIRIX

HP-UX

Tru64 UNIX

Solaris 8 and earlier

Two-level ModelTwo level Model

Thread LibrariesThread Libraries

Thread library provides programmer with API for
creating and managing threads
Two primary ways of implementing

Library entirely in user spaceLibrary entirely in user space
Kernel-level library supported by the OS

PthreadsPthreads

M b id d i h l l k lMay be provided either as user-level or kernel-
level
A POSIX standard (IEEE 1003.1c) API for thread
creation and synchronization
API specifies behavior of the thread library,
implementation is up to development of the implementation is up to development of the
library
Common in UNIX operating s stems (Solaris Common in UNIX operating systems (Solaris,
Linux, Mac OS X)

Java ThreadsJava Threads

Java threads are managed by the JVMJava threads are managed by the JVM

Typically implemented using the threads model
provided by underlying OS

Java threads may be created byJava threads may be created by:

E di Th d lExtending Thread class
Implementing the Runnable interface

Threading IssuesThreading Issues

Semantics of fork() and exec() system callsSemantics of fork() and exec() system calls

Thread cancellationThread cancellation

Signal handlingSignal handling

Thread poolsThread pools

Thread specific datap

Scheduler activations

Semantics of fork() and exec()Semantics of fork() and exec()

Does fork() duplicate only the calling thread or all
threads?

Thread CancellationThread Cancellation

Terminating a thread before it has finishedTerminating a thread before it has finished

Two general approachesTwo general approaches:
Asynchronous cancellation terminates the target thread
immediately

Deferred cancellation allows the target thread to periodically
check if it should be cancelled

Signal HandlingSignal Handling

Signals are used in UNIX systems to notify a process that a Signals are used in UNIX systems to notify a process that a
particular event has occurred
A signal handler is used to process signalsA signal handler is used to process signals
1. Signal is generated by particular event

2. Signal is delivered to a processg p

3. Signal is handled

Options:
Deliver the signal to the thread to which the signal applies

Deliver the signal to every thread in the process

Deliver the signal to certain threads in the process

Assign a specific threa to receive all signals for the process

Thread PoolsThread Pools

fThe scenario of a web server.
A separate thread to serve a request.

Thread (Created -> discarded) : Request (start and finish)?

Unlimited requests -> unlimited threads?

Thread pools
Threads sit and wait for workThreads sit and wait for work.

Faster to response a request.

The number of threads can be dynamically adjusted.y y j

Thread PoolsThread Pools

Create a number of threads in a pool where they await
work

Advantages:
Usually slightly faster to service a request with an existing thread
than create a new thread

Allows the number of threads in the application(s) to be bound to Allows the number of threads in the application(s) to be bound to
the size of the pool

Thread Specific DataThread Specific Data

All h h d h i f dAllows each thread to have its own copy of data

Useful when you do not have control over the thread
creation process (i.e., when using a thread pool)

Scheduler ActivationsScheduler Activations

Both M:M and Two-level models require communication to
maintain the appropriate number of kernel threads allocated
to the applicationto the application

S h d l ti ti id ll i ti Scheduler activations provide upcalls - a communication
mechanism from the kernel to the thread library

This communication allows an application to maintain the
correct number kernel threadscorrect number kernel threads

Operating-system ExampleOperating system Example

Explore how threads are implemented in Windows
XP, Linux, Solaris systems.

PthreadsPthreads

 POSIX d d (IEEE 1003 1) API f h d i d a POSIX standard (IEEE 1003.1c) API for thread creation and
synchronization.
API ifi b h i f th th d lib i l t ti i API specifies behavior of the thread library, implementation is
up to development of the library.

User-level thread library

Common in UNIX operating systems.

pthread_create(), pthread_exit(), pthread_join()

Solaris 2 threadsSolaris 2 threads

Li h i h (LWP)Lightweight processes (LWPs)
Between user- and kernel- threads.

Each process contains at least one LWP.
E h LWP h k l l l th dEach LWP has a kernel-level thread.

A b d l l h dA bound user-level thread
Permanently attached to an LWP. (quick response time)

A b d th dAn unbound thread
Multiplexed onto the available LWP pool.

Solaris 2 threadsSolaris 2 threads

Solaris 2 threads (cont.)Solaris 2 threads (cont.)

U l l h d h d l d d i h d h LWP User-level thread are scheduled and switched among the LWPs
by thread library.

The thread library dynamically adjusts the number of LWPs.
Creates another LWP if all LWPs in a process are blockedp
Deletes unused LWPs (about 5 minutes)

User-level thread: thread ID, register set, stack, priority..
LWP: a register set (for its running user-level thread), misc. info.
Kernel thread: stack, kernel registers, a pointer to the LWP,
priority and scheduling info.

Windows XP ThreadsWindows XP Threads

Implements the one to one mappingImplements the one-to-one mapping
Each thread contains

A thread idA thread id

Register set

Separate user and kernel stacksp

Private data storage area

The register set, stacks, and private storage area are known
as the context of the threads
The primary data structures of a thread include:

ETHREAD (executive thread block)

KTHREAD (kernel thread block)

TEB (thread environment block)

Windows XP ThreadsWindows XP Threads

Linux ThreadsLinux Threads

Linux refers to them as tasks rather than threadsLinux refers to them as tasks rather than threads

Th d ti i d th h l () t llThread creation is done through clone() system call

l () ll h ld k h h dd f h clone() allows a child task to share the address space of the
parent task (process)

END OF CHAPTER 4

