I.-C. Lin, Assistant Professor. Textbook: Operating System
Principles 7ed

CHAPTER 4: MULTITHREADED PROGRAMMING

Chapter 4: Multithreaded Programming

- Overview
- Multithreading Models
- Thread Libraries
- Threading Issues
- Operating-System Examples

Single and Multithreaded Processes

Benefits

- Responsiveness
- Resource Sharing
- Economy
- Utilization of MP Architectures

User Threads

- Thread management done by user-level threads library
- Three primary thread libraries:
 - POSIX Pthreads
 - Win32 threads
 - Java threads

Kernel Threads

- Supported by the Kernel
- Examples
 - Windows XP/2000
 - Solaris
 - Linux
 - Tru64 UNIX
 - Mac OS X

Multithreading Models

- Many-to-One
- One-to-One
- Many-to-Many

Many-to-One

- Many user-level threads mapped to single kernel thread
- Examples:
 - Solaris Green Threads
 - GNU Portable Threads

Many-to-One Model

One-to-One

- Each user-level thread maps to kernel thread
- Examples
 - Windows NT/XP/2000
 - Linux
 - Solaris 9 and later

One-to-one Model

Many-to-Many Model

- Allows many user level threads to be mapped to many kernel threads
- Allows the operating system to create a sufficient number of kernel threads
- Solaris prior to version 9
- Windows NT/2000 with the ThreadFiber package

Many-to-Many Model

Two-level Model

- Similar to M:M, except that it allows a user thread to be bound to kernel thread
- Examples
 - IRIX
 - HP-UX
 - Tru64 UNIX
 - Solaris 8 and earlier

Two-level Model

Threading Issues

- Semantics of fork() and exec() system calls
- Thread cancellation
- Signal handling
- Thread pools
- Thread specific data
- Scheduler activations

Semantics of fork() and exec()

Does fork() duplicate only the calling thread or all threads?

Thread Cancellation

- Terminating a thread before it has finished
- Two general approaches:
 - Asynchronous cancellation terminates the target thread immediately
 - Deferred cancellation allows the target thread to periodically check if it should be cancelled

Signal Handling

- Signals are used in UNIX systems to notify a process that a particular event has occurred
- A signal handler is used to process signals
 - 1. Signal is generated by particular event
 - 2. Signal is delivered to a process
 - 3. Signal is handled

Options:

- Deliver the signal to the thread to which the signal applies
- Deliver the signal to every thread in the process
- Deliver the signal to certain threads in the process
- Assign a specific threa to receive all signals for the process

Thread pools

- The scenario of a web server.
- A separate thread to serve a request.
 - Thread (Created -> discarded): Request (start and finish)?
 - Unlimited requests -> unlimited threads?

Thread pools

- Threads sit and wait for work.
- Faster to response a request.
- The number of threads can be dynamically adjusted.

Thread Pools

Create a number of threads in a pool where they await work

Advantages:

- Usually slightly faster to service a request with an existing thread than create a new thread
- Allows the number of threads in the application(s) to be bound to the size of the pool

Thread Specific Data

- Allows each thread to have its own copy of data
- Useful when you do not have control over the thread creation process (i.e., when using a thread pool)

Scheduler Activations

- Both M:M and Two-level models require communication to maintain the appropriate number of kernel threads allocated to the application
- Scheduler activations provide upcalls a communication mechanism from the kernel to the thread library
- This communication allows an application to maintain the correct number kernel threads

Operating-system Example

Explore how threads are implemented in Windows XP, Linux, Solaris systems.

Pthreads

- a POSIX standard (IEEE 1003.1c) API for thread creation and synchronization.
- API specifies behavior of the thread library, implementation is up to development of the library.
- User-level thread library
- Common in UNIX operating systems.
- pthread_create(), pthread_exit(), pthread_join()

Solaris 2 threads

- Lightweight processes (LWPs)
 - Between user- and kernel- threads.
- Each process contains at least one LWP.
- Each LWP has a kernel-level thread.
- A bound user-level thread
 - Permanently attached to an LWP. (quick response time)
- An unbound thread
 - Multiplexed onto the available LWP pool.

Solaris 2 threads

Solaris 2 threads (cont.)

- User-level thread are scheduled and switched among the LWPs by thread library.
- The thread library dynamically adjusts the number of LWPs.
 - Creates another LWP if all LWPs in a process are blocked
 - Deletes unused LWPs (about 5 minutes)
- User-level thread: thread ID, register set, stack, priority...
- LWP: a register set (for its running user-level thread), misc. info.
- Kernel thread: stack, kernel registers, a pointer to the LWP, priority and scheduling info.

Solaris process

Windows XP Threads

- Implements the one-to-one mapping
- Each thread contains
 - A thread id
 - Register set
 - Separate user and kernel stacks
 - Private data storage area
- The register set, stacks, and private storage area are known as the context of the threads
- The primary data structures of a thread include:
 - ETHREAD (executive thread block)
 - KTHREAD (kernel thread block)
 - TEB (thread environment block)

Linux Threads

- Linux refers to them as tasks rather than threads
- Thread creation is done through clone() system call
- clone() allows a child task to share the address space of the parent task (process)

Java Threads

- Java threads are managed by the JVM
- Java threads may be created by:
 - Extending Thread class
 - Implementing the Runnable interface

Java Thread States

END OF CHAPTER 4