I.-C. Lin, Assistant Professor. Textbook: Operating System
Principles 7ed

CHAPTER 2: SYSTEM STRUCTURES

Chapter 2: Syste

./)

Operating System Services

User Operating System Interface

System Calls

Types of System Calls

System Programs

Operating System Design and Implementation
Operating System Structure

Virtual Machines

Operating System Generation

System Boot

-'D
(0p)

iT
:
n

To describe the services an operating system provides to
users, processes, and other systems

To discuss the various ways of structuring an operating
system

To explain how operating systems are installed and
customized and how they boot

Obperat

N 4

ngS\/q em Services

w8 B8 ’w s 88

Services for the convenience of the programmers (or users)

User interface

Varies between Command-Line (CLI), Graphics User Interface (GUI), Batch

Program execution

Load a program into memory and to run that program, end execution, either
normally or abnormally (indicating error)

/O operations

A running program may require 1/0, which may involve a file or an I/O device.

oo CAWINDOWS\syztem32emd exe
$EF‘FEF§- JA15-F3i44

T4 B6e:32
T4 Be:32
T 11:39
T B7:28
T4 B5:14
T4~ B6:a8
T 12:a7
- mg:-23
F4 B2:53
T4~ B6:25
T4~ B6:25
F B5:1m
T a8:a1
F B5:1m
F4F B2:58

_l AFIRHARRLI
s B Gthom) !I!
B |} Wanrscd Eonciting
BEED WRE WA oSl TRO KR

[+ By gl - ¥ e oEEE [

23 DCommiTemhing
f Emnmme
3 e
o adEaERanEy
TN

I| Tk

| TEMR
I

|| Frotskisy

] B N R

Operating System Serv

o
(D
N
)
@)
B
(om

File-system manipulation

Read and write, create and delete, search files and directories, list file
Information, permission management.

Communications
Processes may exchange information, on the same computer or over a network
May be via shared memory or through message passing

Error detection

Error may occur in the CPU and memory hardware, in I/O devices, in user
program

Should take the appropriate action to ensure correct and consistent computing

Debugging facilities for users to efficiently use the system

Obperat

N 4

¢

ngS\/q em Servic

g8 ’v s 88

(.ﬂ

’-\
3

—

For ensuring efficient system operations

Resource allocation
allocating resources to multiple users or multiple jobs running at the same
time
Many types of resources.

Accounting

To keep track of which users use how much and what kinds of computer
resources

Statistics for improving computing services

Protection and security
Protection involves ensuring that all access to system resources is controlled

Security of the system from outsiders requires user authentication, extends to
defending external I/O devices from invalid access attempts

| 1~ MNn A Chr/ie~ A 2y =
user OUpe (

ng System in |

ClidlLT = CLI

Command-line interpreter allows direct command entry

Sometimes implemented in kernel, sometimes by systems
program

Sometimes multiple flavors implemented — shells

Primarily fetches a command from user and executes it

Sometimes commands built-in, sometimes just names of programs

If the latter, adding new features doesn’t require shell modification

G
p—
-

User Operating System Interface -

User-friendly desktop metaphor interface
Usually mouse, keyboard, and monitor

Icons represent files, programs, actions, etc
Various mouse buttons over objects in the interface cause various actions

Many systems now include both CLI and GUI interfaces

Microsoft Windows is GUI with CLI “command” shell

Apple Mac OS X as “Aqua” GUI interface with UNIX kernel underneath and
shells available

Solaris is CLI with optional GUI interfaces

Programming interface to the services provided by the OS

Typically written in a high-level language (C or C++)

Mostly accessed by programs via a high-level Application
Program Interface (API) rather than direct system call use

Three most common APIs are Win32 API for Windows, POSIX API for POSIX-
based systems (including virtually all versions of UNIX, Linux, and Mac OS X),
and Java API for the Java virtual machine (JVM)

Why do we use APIs rather than system calls?

RN Noi § § 8§

Example o

f Svstem Calls

,VEVIII

System call sequence to copy the contents of one file to

another file

source file

q Example System Call Sequence i

Terminate normally

E=

destination file

Acquire input file name
Write prompt to screen
Accept input

Acquire output file name
Write prompt to screen
Accept input

Open the input file
if file doesn't exist, abort

Create output file
if file exists, abort

Loop
Read from input file
Write to output file

Until read fails

Close output file

Write completion message to screen

RN Noi § § 8§] L .] [

Example of Standard API

Consider the ReadFile() function in the Win32 APl—a function for
reading from a file

A description of the parameters passed to ReadFile()
HANDLE file—the file to be read
LPVOID buffer—a buffer where the data will be read into and written from
DWORD bytesToRead—the number of bytes to be read into the buffer
LPDWORD bytesRead—the number of bytes read during the last read
LPOVERLAPPED ovl—indicates if overlapped I/O is being used

return value

'

BOOL ReadFile ¢ (HANDLE file,
LPVOID buffer,
T DWORD bytes To Read, | parameters
LPDWORD bytes Read,
LPOVERLAPPED ovl) ;

function name —

N
<
N

—t

(D
3

@)

D
3

=3

(D
3

(D
>

—t

Q)

i

@)
B

The system call interface

invokes intended system call in OS kernel and returns status of the system
call and any return values

The caller need know nothing about how the system call is
implemented
Just needs to obey APl and understand what OS will do as a result call

Most details of OS interface hidden from programmer by API

Managed by run-time support library (set of functions built into libraries included
with compiler)

user

open ()

mode

kernel

system call interface

mode

=

open ()

Implementation
of open ()
system call

return

andard C L

wl 8§ B

brary Example

| | _I s 8B

C program invoking printf() library call, which calls write()

system call

#include <stdio.h>
int main ()

printf ("Greetings"); |-

return o;

}

user
mode

standard C library

kernel

mode
Qrte ()

write ()
system call

Svstem Call Parameter Pass

Ne
e o

Three general methods used to pass parameters to the OS

Simplest: pass the parameters in registers
In some cases, may be more parameters than registers

Parameters stored in a block, or table, in memory, and address of block
passed as a parameter in a register

This approach taken by Linux and Solaris

Parameters placed, or pushed, onto the stack by the program and popped
off the stack by the operating system

Block and stack methods do not limit the number or length of parameters
being passed

.U
Q)
N
43
S
0Q

X: parameters
for call

register

load address X
system call 13 —

/

—® use parameters

from table X

user program

>

operating system

code for
system
call 13

Types of System Calls

Process control

File management

Device management
Information maintenance

Communications

free memory

free memory

command
interpreter

process

kernel

command
interpreter

(@)

kernel

(0)

(a) At system startup (b) running a program

FreeBSD Running Multiple
Programs
]

process D

free memory

process C

interpreter

process B

kernel

ystem Programs

A convenient environment for program development and
execution. They can be divided into:

File manipulation

Status information

File modification

Programming language support

Program loading and execution

Communications

Application programs

Most users’ view of the operation system is defined by system
programs, not the actual system calls

System Programs

Provide a convenient environment for program development
and execution

Some of them are simply user interfaces to system calls; others are
considerably more complex

File management

Create, delete, copy, rename, print, dump, list, and generally
manipulate files and directories

vstem P_rQ

3
(Vp)
/-\
3
N—

Status information

Some ask the system for info - date, time, amount of available memory,
disk space, number of users

Others provide detailed performance, logging, and debugging
information

o)
- <
o)
(s
-
D
= <
)
-
—t
©
c
—
Q.
M
<
(@)
M
wn

Some systems implement a registry - used to store and retrieve
configuration information

System Progr

,v s 5 858 B

3
(Vp)
/-\
3
N—

File modification
Text editors to create and modify files

Special commands to search contents of files or perform
transformations of the text

Programming-language support

Compilers, assemblers, debuggers and interpreters sometimes
provided

Program loading and execution

Absolute loaders, relocatable loaders, linkage editors, and overlay-
loaders, debugging systems for higher-level and machine language

System Programs (cont.)

Communications

Provide the mechanism for creating virtual connections among
processes, users, and computer systems

Allow users to send messages to one another’s screens, browse web
pages, send electronic-mail messages, log in remotely, transfer files
from one machine to another

Operating System Design and
Implementation

Design and Implementation of OS not “solvable”, but some
approaches have proven successful

Internal structure of different Operating Systems can vary
widely

e AanA chnAa~ifiratiAane
S dliuU DlJCb”lLC".lU'lD

Affected by choice of hardware, type of system

Operating System Design and Implementation
(Cont.)

User goals and System goals

User goals

operating system should be convenient to use, easy to learn, reliable, safe, and
fast

System goals

operating system should be easy to design, implement, and maintain, as well as
flexible, reliable, error-free, and efficient

Important principles to separate
Policy: What will be done?
Mechanism: How to do it?

Operating System Design and Implementation
(Cont.)

Mechanisms determine how to do something, policies decide
what will be done

The separation of policy from mechanism is a very important principle,
it allows maximum flexibility if policy decisions are to be changed later

3
':
‘.__"
'1

MS-DOS — written to provide the most functionality in the
least space

Not divided into modules

Although MS-DOS has some structure, its interfaces and levels of
functionality are not well separated

MS-DOS !_:4 er Structure

s v B - Wwi Wi W Ww Wl

application program

resident system program

MS-DOS device drivers

ROM BIOS device drivers

ayered Approach

The operating system is divided into a number of layers (levels)

The bottom layer (layer 0), is the hardware; the highest (layer N) is the user
interface.

With modularity, layers are selected such that each uses functions
(operations) and services of only lower-level layers

layer N
user interface

layer O
hardware

-
(D
Q.
@)

new
operations

hidden
operations

existing
operations

> layer M

>

I layer M—1
—>

>

‘ v

UNIX

UNIX — limited by hardware functionality, the original UNIX
operating system had limited structuring.

The UNIX OS consists of two separable parts
Systems programs

The kernel

Consists of everything below the system-call interface and above the physical
hardware

Provides the file system, CPU scheduling, memory management, and other
operating-system functions; a large number of functions for one level

Kernel

(the users)

shells and commands
compilers and interpreters

system libraries

system-call interface to the kernel

signals terminal
handling

character I/O system

terminal drivers

disk and tape drivers

file system

swapping block I/O

system

CPU scheduling
page replacement
demand paging
virtual memory

kernel interface to the hardware

terminal controllers
terminals

device controllers
disks and tapes

memory controllers
physical memory

licrokernel Svstem Stru

S S § 8§ 8B ’v 5 5 8 =]

'1
(D

Moves as much from the kernel into “user” space

Communication takes place between user modules using message
passing

Benefits:
Easier to extend a microkernel
Easier to port the operating system to new architectures
More reliable (less code is running in kernel mode)

More secure

Detriments:

Performance overhead of user space to kernel space communication

<
Q)
O

N
[

O
Vp)
>
Vp)
e~
i
O
-
5
(D

application environments
and common services

I

kernel BSD

lenvironment
Mach

Modules

5 v B A ¢ |

Most modern operating systems implement kernel modules
Uses object-oriented approach
Each core component is separate
Each talks to the others over known interfaces

Each is loadable as needed within the kernel

Overall, similar to layers but with more flexible

O
Q)
=,
(0p)
O
O
Q
-5
>
S
O
-
O
Q)
(@)
D

scheduling
classes

device and
bus drivers

core Solaris
miscellaneous kernel loadable
modules system calls
STREAMS executable
modules formats

V

rtual Mach

nes

Takes the layered approach to its logical conclusion.

It treats hardware and the operating system kernel as though they were
all hardware

A virtual machine provides an interface identical to the
underlying bare hardware

The operating system creates the illusion of multiple processes.

Each executing on its own processor with its own (virtual) memory

The resources of the physical computer are shared to create the
virtual machines

CPU scheduling can create the appearance that users have their own
processor

Spooling and a file system can provide virtual card readers and virtual line
printers

A normal user time-sharing terminal serves as the virtual machine
operator’s console

Difficult to implement due to the effort required to provide an
exact duplicate to the underlying machine

Virtual user mode, virtual monitor mode: in the physical user mode.

—
—
5
i
-
Q
Q)
O
=3
B
(D
N
D)
@)
»
(om &

processes
processes
processes processes
programming L
. ernel kernel kernel
‘ / interface
e VM1 VM2 VM3
virtual-machine
implementation
hardware e aaTe

(a) (b)

Benefits of Virtual Machines

Provides complete protection of system resources

Each virtual machine is isolated from all other virtual machines. This
isolation, however, permits no direct sharing of resources.

A perfect vehicle for operating-systems research and
development.

Instead of on a physical machine; does not disrupt normal system operation.

A means of solving system compatibility problems

VMw A

Q)
5
(D
5
O
3
f—l'.
(D
O
—
S
(D

(

application application application application

guest operating guest operating guest operating
system system system

(free BSD) (Windows NT) (Windows XP)

virtual CPU virtual CPU virtual CPU

virtual memory virtual memory virtual memory

virtual devices virtual devices virtual devices

virtualization layer

Y Y

host operating system
(Linux)

hardware

CPU memory I/O devices

class loader

!

Java
interpreter

4

host system
(Windows, Linux, etc.)

System Implementat

s 858 s 85 8B 5 8 § i W

on

Traditionally written in assembly language, operating systems
can now be written in higher-level languages. (Unix, WinNT,
0S/2)

Unix: parts of the scheduler and device drivers are implemented in
assembly language.

Code written in a high-level language:
can be written faster.
is more compact.
is easier to understand and debug.

An operating system is far easier to port (move to some other
hardware) if it is written in a high-level language.

Operating Syste
r~ O v

m
(D
—r

Operating systems are designed to run on any of a class of
machines; the system must be configured for each specific
computer site

Booting — starting a computer by loading the kernel

Bootstrap program — code stored in ROM that is able to locate
the kernel, load it into memory, and start its execution

Svstem Boo

,v s 858

Operating system must be made available to hardware so
hardware can start it

Small piece of code — bootstrap loader, locates the kernel, loads it into
memory, and starts it

Sometimes two-step process where boot block at fixed location loads
bootstrap loader

When power initialized on system, execution starts at a fixed memory
location

Firmware used to hold initial boot code

MBR (Master Boot Record): typically, the 1st sector of the hard
disk

END OF CHAPTER 2

