Human Computer Interaction

9. Advanced Input Devices (A)

National Chiao Tung Univ, Taiwan By: I-Chen Lin, Assistant Professor

Objectives

Advanced control/Input devices and technologies.

■ The state-of-the-art systems.

Ref:

- D.A. Bowman, E. Kruijff, J.J. LaViola, I. Poupyrev, 3D User Interfaces: Theory and Practice, Addison Wesley Professional, 2005.
- Course notes, "3D User Interfaces", CS, Columbia Univ...
- Course notes, "Introduction to Human-Computer Interaction Design", CS, Stanford Univ..

Input Device Issues

- What actions does it afford?
- What resolution/sensitivity does it offer?
- What dexterity does it require/allow?
- What is it efficient/inefficient at doing?
- What interaction techniques is it suitable for?
- What are its ergonomic advantages and problems?

Dimensions of Performance

- Continuous vs. discrete
- Resolution and accuracy
- Sampling rate and latency
- Noise, aliasing and nonlinearity
- Direct vs. Indirect
- Absolute vs. relative
- Control-to-display ratio
- Physical property sensed
- Position, motion, force
- Degrees of freedom

Symbolic Input

- Task of entering
 - Text
 - Numbers
 - Symbols
- Desktop symbolic input
- Mobile symbolic input
 - Standing, walking, communicating
- 3D UI symbolic input
 - Tracked, gestural, etc.

Symbolic Input (cont.)

- Conditions for 3D environment
 - Mobile users
 - Not seated: standing, crouching,...
 - About to move → Actively moving
 - No dedicated desk surface
 - Hands busy or full
 - Eyes busy, occluded, or in low light
 -

Keyboards

Some Ergonomic Issues

- Hand position Freedom of hand for positioning device
- Touch typing vs. hunt and peck
- Repetitive stress / fatigue
- One handed use
- Need for support

Mobile (Chord, Multi-press,...)

Advanced Symbolic Input

J. Mankoff & G. Abowd, UIST'98

Samsung Scurry

Advanced Symbolic Input

- Data gloves
 - Key poses or continuous sign recognition.
 - HMM-based recognition
 - Learnability
 - **.....**

Advanced Keyboards

Virtual Keyboard

Pointing Devices

- Target acquisition
- Steering / positioning
- Tracking
- Freehand drawing
- Drawing lines
- Tracing and digitizing
- Clicking, Double-clicking, dragging
- Gesture

Indirect Pointing Devices

- Keys (discrete)
- Mouse
- Joystick
- Trackball
- Touchpad
- Tablets (non-display)
-

The First Mouse (Stanford Research Institute, 1964)

Trackball, Trackpad, Trackpoint

- What is Sensed
 - Motion (e.g., mouse)
 - Position (e.g., trackpad)
 - Force (e.g., trackpoint)

Tracking Pointers

Eye tracker

Head tracker

Tracking by brain signals

Fitts Law

- \blacksquare MT = a + b log2 (A/W + 1)
 - a: the start/stop time of the device
 - b : the inherent speed of the device
 - A: the distance from the starting point to the center of the target
 - W: the width of the target (along the axis of motion)
- Target acquisition time is proportional to the log of the ratio of the Distance to the Width of the target.
- Applies to position control devices
 - Same for direct and indirect

Pen/Touch Input

- Good for pointing and drawing
- Natural for gestures
- Possibility of multiple pointers
- Not an efficient way for text entry
- Handwriting
 - Problems of interpretation
 - Special characters/gestures

Touch Screen

Multi-Touch Screen

J.Y. Han, "Low-Cost Multi-Touch Sensing through Frustrated Total Internal Reflection", Proc. UIST'05.

Multi-Touch Screen (cont.)

- Simple image processing operations
 - Rectification, background subtraction, noise removal, and connected components analysis
 - Low cost video capturing
- Inherent drawbacks of vision-based system
 - Requires a significant amount of space
 - Skin reflectance, pixel resolution, etc.

Tangible or Mixing Interaction

S. Klemmer et al. "Designers' Outpost: A Tangible Interface for Collaborative Web Site Design", Proc. UIST'01.

Designers' Outpost

Designers' Outpost

Designers' Outpost

Touch sensitive SMART board augmented with two digital cameras

Tangible or Mixing Interaction

Tangible UI (Illuminating Clay)

- B. Piper, C. Ratti, Y. Wang, B. Zhu, S. Getzoyan, & H. Ishii, Proc. CHI 2002.
- Allow users to interact with real freeform surfaces
- Users
 - Molds surface of clay
- System
 - Determines height of surface
 - Projects imagery corresponding to tasks

Illuminating Clay (cont.)

